Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Identifying and quantifying preferential flow (PF) through soil—the rapid movement of water through spatially distinct pathways in the subsurface—is vital to understanding how the hydrologic cycle responds to climate, land cover, and anthropogenic changes. In recent decades, methods have been developed that use measured soil moisture time series to identify PF. Because they allow for continuous monitoring and are relatively easy to implement, these methods have become an important tool for recognizing when, where, and under what conditions PF occurs. The methods seek to identify a pattern or quantification that indicates the occurrence of PF. Most commonly, the chosen signature is either (1) a nonsequential response to infiltrated water, in which soil moisture responses do not occur in order of shallowest to deepest, or (2) a velocity criterion, in which newly infiltrated water is detected at depth earlier than is possible by nonpreferential flow processes. Alternative signatures have also been developed that have certain advantages but are less commonly utilized. Choosing among these possible signatures requires attention to their pertinent characteristics, including susceptibility to errors, possible bias toward false negatives or false positives, reliance on subjective judgments, and possible requirements for additional types of data. We review 77 studies that have applied such methods to highlight important information for readers who want to identify PF from soil moisture data and to inform those who aim to develop new methods or improve existing ones.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract The size and spatial distribution of soil structural macropores impact the infiltration, percolation, and retention of soil water. Despite the assumption often made in hydrologic flux equations that these macropores are rigid, highly structured soils can respond quickly to moisture variability‐induced shrink‐swell processes altering the size distribution of these pores. In this study, we use a high‐resolution (180 m) laser imaging technique to measure the average width of interpedal, planar macropores from intact cross sections and relate it to matrix water content. We also develop an expression for unsaturated hydraulic conductivity that accounts for dynamic macropore geometries and propose a method for partitioning sensor soil water content data into matrix and macropore water contents. The model was applied to a soil in northeastern Kansas where soil monoliths had been imaged to quantify macropore properties and continuous water content data were collected at three depths. Model‐predicted macropore width showed significant sensitivity to matrix water content resulting in changes of 15%–50% of maximum width over the 15‐month period of record. Transient saturated hydraulic conductivity predicted from the model compared favorably to a previously developed model accounting for moisture‐induced changes to structural unit porosity. Following periods of low soil moisture, infiltrating meteoric water filled highly conductive macropores increasing by several orders of magnitude which subsequently decreased as water was absorbed into the matrix and macropores drained. This model offers a means by which to combine measurable morphological data with soil moisture sensors to monitor dynamic hydraulic properties of soils susceptible to shrink‐swell processes.more » « lessFree, publicly-accessible full text available September 1, 2026
-
ABSTRACT Woody encroachment—the expansion of woody shrubs into grasslands—is a widely documented phenomenon with global significance for the water cycle. However, its effects on watershed hydrology, including streamflow and groundwater recharge, remain poorly understood. A key challenge is the limited understanding of how changes to root abundance, size and distribution across soil depths influence infiltration and preferential flow. We hypothesised that woody shrubs would increase and deepen coarse‐root abundance and effective soil porosity, thus promoting deeper soil water infiltration and increasing soil water flow velocities. To test this hypothesis, we conducted a study at the Konza Prairie Biological Station in Kansas, where roughleaf dogwood (Cornus drummondii) is the predominant woody shrub encroaching into native tallgrass prairie. We quantified the distribution of coarse and fine roots and leveraged soil moisture time series and electrical resistivity imaging to analyse soil water flow beneath shrubs and grasses. We observed a greater fraction of coarse roots beneath shrubs compared to grasses, which was concurrent with greater saturated hydraulic conductivity and effective porosity. Half‐hourly rainfall and soil moisture data show that the average soil water flow through macropores was 135% greater beneath shrubs than grasses at the deepest B horizon, consistent with greater saturated hydraulic conductivity. Soil‐moisture time series and electrical resistivity imaging also indicated that large rainfall events and greater antecedent wetness promoted more flow in the deeper layers beneath shrubs than beneath grasses. These findings suggest that woody encroachment alters soil hydrologic processes with cascading consequences for ecohydrological processes, including increased vertical connectivity and potential groundwater recharge.more » « less
An official website of the United States government
